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Spatiotemporal control of the Ras/ERK MAP kinase signaling pathway is a key factor
for determining the specificity of cellular responses including cell proliferation, cell
differentiation and cell survival. The fidelity of this signaling is regulated by docking
interactions as well as scaffolding. Subcellular localization of ERK is controlled by
cytoplasmic ERK anchoring proteins that have a nuclear export signal (NES), such as
MEK. In quiescent cells, ERK and MEK localize to the cytoplasm. In response to stim-
ulation, dissociation of the MEK-ERK complex is induced and activated ERK translo-
cates to the nucleus. Recently, several negative regulators for Ras/ERK signaling
have been identified and their detailed molecular mechanisms have been analyzed.
Among them, Sprouty and Sef act as a temporal and a spatial regulator, respectively,
for Ras/ERK signaling. Thus, multiple factors are involved in control of Ras/ERK sig-
naling.
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Overview

The Ras/ERK MAP kinase signaling pathway is highly
conserved throughout evolution, and plays an important
role in various cellular responses including cell proliferation,
cell differentiation and cell survival (I1-5). Many studies
about regulation of Ras/ERK signaling have been reported.
Spatiotemporal control of this signaling is a key factor for
determining the specificity of cellular responses (6-8).

The fidelity of ERK MAP kinase signaling

The MAP kinase (MAPK) cascades convey signals in
the form of phosphorylation events. Therefore, MAPKs
form a complex with their cognate MAPKKSs, substrates
and phosphatases. There are three major subgroups of
the MAPK family: ERK, p38 and JNK/SAPK. These
members are activated by different stimuli and are
involved in signaling to different responses through dif-
ferent pathways. In order to achieve the specificity and
efficiency of the enzymatic reaction, there are two main
mechanisms in the MAP kinase cascades: the docking
interaction and the scaffolding (9, 10).

MAPKs utilize the common docking (CD) domain for
docking interactions with MAPKKs, MAPKAPKs and
phosphatases (11). The CD domain is featured by a clus-
ter of negatively charged amino acids and is located in
the C-terminal portion of MAPKSs in the primary sequence.
MAPKSs have another site called the ED site, near the CD
domain in the steric structure, which could determine the
docking specificity towards MAPKAPKSs (12). In addition,
hydrophobic regions of MAPKs are also important for
docking interactions (13—16). All of these docking sites
locate outside the catalytic domain and determine the
specificity of interacting molecules (Fig. 1, left).
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Scaffolding proteins interact with several components
of the MAPK cascades to tether both enzymes and sub-
strates specifically to achieve accurate signal transduc-
tion (10). KSR and MP-1 are known to function as an
ERK scaffold. Actually, these molecules have been
reported to associate with several components of the
ERK signaling pathway and to enhance ERK activation
(17, 18). The JNK-interacting protein (JIP) family is also
a well-known scaffold protein family (10). The JIP pro-
teins bind to JNK, MKK7 and members of the mixed-lin-
eage protein kinase (MLK) group. In addition, a recent
report showed that JIP1 and JIP2 also interact with
MKP-7 (19). Thus, JIP scaffold complexes include both
activating and inhibitory components of the JNK signal-
ing pathway (Fig. 1, right).

Through these molecular mechanisms described above,
MAPKSs react with appropriate partners to avoid undesir-
able outcomes. Therefore, the docking interaction and the
scaffolding may regulate not only the efficiency and spe-
cificity of the cascade but also the ordered and integrated
signaling.
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Fig. 1. In the MAPK cascade, two kinds of mechanisms for
determining the efficiency and specificity are used. The
docking interactions are achieved through the docking groove
including the CD domain and the ED site (left). The scaffold protein
tethers several components of the JNK signaling pathway (right).
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Fig. 2. A model for nuclear translocation of ERK. The activa-
tion of the ERK pathway results in the phosphorylation of ERK and
the subsequent dissociation of ERK from MEK. Dissociated ERK
translocates from the cytoplasm to the nucleus by three pathways;
(A) active transport of a dimer, (B) passive diffusion of a monomer
and (C) transport mediated by direct interaction of ERK with the
nuclear pore complex.

Subcellular localization of ERK

MAPKSs dramatically change their subcellular localiza-
tion upon the extracellular stimuli. In quiescent cells,
ERK localizes to the cytoplasm. This cytoplasmic locali-
zation of ERK is mediated by its specific binding to classi-
cal MAPKKs, MEK1 and MEK2, which localize to the
cytoplasm. The cytoplasmic localization of MEK is
achieved by its NES sequence in its amino-terminal
domain (20). In addition to MEK, PEA-15, which also
contains NES, binds ERK and retains ERK in the cyto-
plasm (21).

Phosphorylation of ERK induced by extracellular stim-
uli, such as growth factors, leads to dissociation of ERK
from MEK. The dissociated ERK translocates from the
cytoplasm to the nucleus. There are three pathways for
the nuclear import of ERK; (i) passive diffusion of a mon-
omer, (ii) active transport of a dimer, which is mediated
by the low molecular weight GTPase Ran and the impor-
tin-p family protein(s), and (iii) Ran/importin-p family-
independent transport, which is mediated by direct inter-
action of ERK with the nuclear pore complex (Fig. 2 and
Refs. 22-25). In the nucleus, ERK phosphorylates and
activates several nuclear targets such as transcription
factors. Nuclear localization of ERK appears to be prereq-
uisite for proper cellular responses (26). The nuclear
accumulation of ERK may require an unidentified
nuclear anchor(s) (27). The nuclear anchor(s) may be a
short-lived protein synthesized by the ERK pathway acti-
vation. Interestingly, in fission yeast, the nuclear import
of stress-activated MAPK Spc1 is coupled with its dissoci-
ation from MAPKK Wisl, and the nuclear retention of
Spcl requires a nuclear anchor (28). Therefore, several
aspects of the mechanism of nuclear translocation of
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MAPK may be evolutionarily conserved. Further studies
are required to elucidate the mechanism for nuclear
import of other MAPK family members.

To prepare the subsequent stimulation, ERK must
relocalize to the cytoplasm. This relocalization of ERK
could be achieved by an NES-dependent nuclear export.
MEK, which mostly localizes to the cytoplasm due to its
NES, can shuttle between the cytoplasm and the nucleus.
It has been suggested that the relocalization of inactive
ERK involves MEK-dependent active transport; MEK
transiently enters the nucleus and binds inactive ERK to
export it from the nucleus (29). The regulation of subcel-
lular localization of ERK should be crucial for specific cel-
lular responses to extracellular stimuli.

Temporal control of ERK signaling by Sprouty1/2

Sprouty and Sprouty-related protein with EVH-1
domain (Spred) have been identified as conserved inhibi-
tors for Ras/ERK MAP kinase signaling (30-37). Recent
studies have demonstrated detailed molecular mecha-
nisms of action of Sprouty or Spred (37—49). Spred inhib-
its Ras/ERK signaling at the level of Raf by binding to
Ras and Raf (37). However, the action mechanism of
Sprouty has been controversial.

Sprouty proteins bind various proteins. We have
reported that Sproutyl/2 becomes phosphorylated on a
conserved tyrosine residue (Y53 in Sproutyl or Y55 in
Sprouty2) in their amino-terminal domain in a stimulus-
dependent manner (Fig. 3 top left) and binds to Grb2 (40).
This binding prevents Grb2 from binding to either FRS2
or Shp2, leading to inhibition of Ras/ERK signaling.
Moreover, we have shown that Sproutyl/2 would be
dephosphorylated by Shp2 (47). Other several reports
have indicated that Sproury2 becomes phosphorylated on
the same conserved tyrosine in a stimulus-dependent
manner, and becomes bound to c-Cbl, the E3 ubiquitin
ligase (43—45, 49). This association results in polyubig-
uitylation and subsequent degradation of Sprouty2 by
the proteasome. In EGF signaling, c-Cbl normally binds
to the activated EGF receptor and promotes its polyubiq-
uitylation and subsequent degradation. However, bind-
ing of Sprouty2 to c-Cbl inhibits this function of ¢c-Cbl. As
a result, Sprouty2 enhances EGF signaling in contrast
with its function in FGF signaling (41, 43—45). The other
group reported that the carboxy-terminal cysteine-rich
domain of Sprouty4 binds to Rafl (46). This interaction
inhibits VEGF-induced activation of Raf, but not Ras-
induced one. As Sprouty4 does not become phosphor-
ylated in response to FGF or EGF stimulation (40, 49),
the action mechanism of Sprouty4 could be different from
that of Sprouty1/2. Nevertheless, the conserved tyrosine
residue in their amino-terminal domain appears to be
required for Sprouty proteins’ inhibitory activity. Mutant
Sprouty proteins in which the conserved tyrosine residue
(Y53 in Sprouty1/4 or Y55 in Sprouty2) is mutated act as
a dominant-negative form (39, 40, 49). By using this dom-
inant-negative form of Sprouty, we have found that
Sprouty1/2 could control the duration of ERK activity
(40). Overexpression of Sproutyl results in transient
ERK activation, whereas overexpression of Sproutyl
Y53F results in sustained ERK activation (Fig. 3, top
right). Correspondingly, overexpression of Sproutyl
Y53F or Sprouty2 Y55F in PC12 cells enhances FGF-
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Fig. 3. Spatiotemporal control of Ras/
ERK signaling. Sprouty (Spry) is phos-
phorylated and activated in a stimulus-
dependent manner (top left). Sprouty
controls the duration of ERK activation
and provides temporal control for ERK sig-
naling (top right). Sef provides spatial
control for ERK signaling. Sef inhibits dis-
sociation of the MEK/ERK complex and
vector retains activated ERK on the Golgi appa-
ratus. Thus Sef specifically inhibits ERK
nuclear translocation without inhibiting
its activity in the cytoplasm (bottom).
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induced neurite outgrowth. Thus Sprouty provides tem-
poral control for Ras/ERK signaling.

Spatial control of ERK signaling by Sef

Recently, Sef, a putative transmembrane protein, was
identified in zebrafish as a negative feedback inhibitor
for Ras/ERK signaling (50, 51). Sef has been identified in
other vertebrates and thus is thought to be a conserved
inhibitor for Ras/ERK signaling (50-54). However, there
are contradicting reports concerning the action point of
Sef. Several reports indicate that Sef acts downstream of,
or at MEK and inhibits phosphorylation of ERK (50, 55,
56). In contrast, other reports argue that Sef inhibits
FGF signaling upstream of Ras by binding to FGF recep-
tor (57, 58)

Most recently, our analyses have shown that Sef acts
as a spatial regulator for Ras/ERK signaling by specifi-
cally blocking ERK nuclear translocation without inhibit-
ing its activity in the cytoplasm (59). Immunoprecipita-
tion assays have shown that Sef binds to the MEK-ERK
complex. Rather surprisingly, the binding of Sef to the
MEK-ERK complex did not inhibit the phosphorylation
or the kinase activity of ERK. Moreover, in immunofluo-
rescence experiments, Sef colocalized with activated ERK
as well as activated MEK mainly on the Golgi apparatus
in stimulated cells. Recent reports suggested that part of
Ras is localized and activated on the Golgi apparatus in
response to EGF stimulation (60-62). Sef on the Golgi
apparatus could bind well to the MEK-ERK complex,
which is activated downstream of Ras on the Golgi. Nota-
bly, Sef blocks active MEK-induced dissociation of the
MEK-ERK complex and EGF-induced ERK nuclear
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translocation. Furthermore, we have found that Sef
inhibits phosphorylation of nuclear ERK substrates with-
out affecting phosphorylation of cytoplasmic ERK sub-
strates. Sef inhibits stimulus-dependent phosphorylation
of Elk-1, a nuclear target of ERK, but does not inhibit
phosphorylation of RSK2, a well-known ERK substrate
in the cytoplasm. Downregulation of endogenous Sef by
siRNA enhances stimulus-induced ERK nuclear translo-
cation and the expression level of ERK target genes, such
as c-fos without affecting phosphorylation of both ERK
and RSK2. Thus we propose that Sef is a specific inhibi-
tor of Ras/ERK signaling to the nucleus by targeting ERK
to the cytoplasm (Fig. 3, bottom) and provides spatial
control for Ras/ERK signaling.

Conclusion and future prospects

As describe above, spatiotemporal control of ERK MAP
kinase signaling is finely regulated by multiple factors,
such as Sprouty and Sef. Sprouty is phosphorylated in a
stimulus-dependent manner and provides temporal con-
trol for ERK signaling. The next challenges may include
elucidation of control mechanisms of ERK signaling by
Sprouty in vivo. Sef binds to active MEK, and targets
ERK to the cytoplasm. Therefore, Sef provide spatial con-
trol of ERK signaling. The next challenges may include
elucidation of regulatory mechanisms of Sef.
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